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I. INTRODUCTION 

Let c9- (F(x=u);uEA} be a location parameter family of distributions, 

where A is an appropriate subset of the real line such as an interval or a 

countable collection of real numbers. A distribution M(x) of a random 

variable X is called a finite location mixture on ~ if and only if there 

exists a positive integer k, positive constants p
1
,p2 , ••. ,pk with sum 

equal to one, and distinct distributions F(x-11__),F(x-u2 ), ••• ,F(x-uk) 

belonging to J7- , such that 

M(x) 
k 

== I:p.F(x=u.) 
i==l l l 

(1) 

Suppose that U is a discrete random variable defined on A with the 

probability mass function 

i ==1' 2' •• 0 ' k • 

If A includes zero, then the distribution F(s) of a random variable, 

say s, generates the family~. Now it can be shown easily, by using 

(2) 

conditional distribution or characteristic function, that X is distributed 

as S+U or briefly X ~ S+U, where S and U are independent. We assume 
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that the distribution of the generator random variable S is completely 

known and the distribution of U depends on the unknown parameters 

and u. 1 s. 
J_ 

p. IS 
l 

Similarly a distribution N(y) of a random variable Y is called a 

finite scale mixture if 

k 
N(y) b p. G(y/v.) 

i=l J_ J_ 

(3) 

Here the distinct distributions G(y/v
1

),G(y/v2 ), •.• ,G(y/vn) belong to a 

scale family of distributions ~ = {G(y/v):vEB}, where B is. an appro-

priate subset of (0 oo) ·- p'. 's are defined as before. 
' :; ' J_ 

Suppose that V is a discrete positive random variable defined on B 

with the probability mass function 

i=l,2, ••.• ,k . (4) 

If B includes 1, then the distribution G(t) of a random variable, 

sa;y T, generates the family It is easy to show that d 
Y = TV, where 

T and V are two independent random variables. 

From X ~ S+U we have X d S U 
e = e e , i.e., a finite location mixture can 

be reduced to a finite scale mixture by the exponential transformation y = 

Similarly, from Y ~TV we have logjyj ~ logiTI + logV, i.e., a finite 

scale mixture can be reduced to a finite location mixture by the logarithmic 

transformation x = loglyj. 

Representation of these finite mixtures in terms of random variables is 

X e • 

quite useful for generating random samples and for analyzing their properties. 
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A finite mixture of normal distributions with the same known variance 

is an example of a finite location mixture, and a finite mixture of nega-

tive exponential distributions is an example of a scale mixture. The point 

estimation of the parameters in a mixture of two such distributions has 

received some attention in the literature. However, when we have a mixture 

of more than two of these distributions, or more generally a finite location 

or scale mixture, estimation becomes more difficult. 

In this article we first show, by a simple argument, that finite loca-

tion and finite scale mixtures are identifiable. Next, we suggest a method 

of moments for estimating the unknown parameters. Finally, as an example, 

we apply the method to a finite mixture of negative exponential distri-

butions. 

2. IDENTIFIABILITY OF FINITE LOCATION 

AND FINITE SCALE MIXTURES 

Definition. A finite location mixture given by (1) is identifiable with 

respect to ~ if it has a unique representation as far as the mixed distri-

butions, their number, and the mixing proportions are concerned. In other 

words, 

implies k k' 

u. = u' .. 
l J 

M(x) 
k 
[ p.F(x-u.) 

. 1 l l l= 

k' 
E p'.F(x-u'.) 
. 1 J J J= 

and for each i there is some j 

(5) 

such that p'. 
J 

and 

In terms of random variables, we can interpret this definition in the 

following way: if X ~ S+U, for the independent random variables S and u, 
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and if X~ S+U', for the independent random variables S and U', 

then the distribution of X is identifiable wi'th respect to .J- if and 

only if U ~ U' • 

In general, estimation problem for a mixture makes sense if the 

mixture is identifiableo We can easily shmll that a finite location 

mixture is identifiable by using the above interpretation. For this 

purpose, we denote the characteristic functions of S~ u, and U1 respec­

tively by cp8 (t).)l cpu(t), and cpu, (t). If S+U ~ S+U', then 

(6) 

It is known that a characteristic function is equal to 1 at t = o, and 

it is a continuous function. Thus for some E > o, cp8 (t) f 0 ~nd 

for all t in the interval (-E_.,E). Since by (2) all the moments of U 

existJ it follows from (7) that 

for all non-negative integers n. It is also easy to show that 

sup 
n 
~ cl I I I I 1\ oo n <max u1 , u2 ~···' ~ ; < • 

NowJ using (8) and (9)~ by the moment problem (see [4] page 182), we con­

clude that U ~ U' • 

4 

(7) 

(8) 

(9) 



The identifiability of a finite scale mixture follows immediately 

from the identifiability of a finite location mixture by using the loga-

rithmic transformation we referred to in Section 1. 

The identifiability of a finite location mixture has also been demon-

strated by Yakowitz and Spragins [8] by using a general characterization 

theorem regarding the identifiability of finite mixtures. 

3o ESTIMATION OF PARAMETERS 

To estimate the parameters of a finite location or scale mixture we 

apply a moment technique similar to that used by Bliscke [3], and Rennie [ 5]. 

However, to simplify the procedure, we often use the relations X ~ S+U 

d and Y = TV. 

Consider a random sample x1,x2, ••• ,xn from the location mixture (1), 

and denote the rth moments of X, s, and U respectively by a , b , 
r r 

and 

cr with d0 = b0 = c0 = l. We assume that all the moments in question 

exist. Since the distribution M(x) depends on 2k-l unknown parameters, 

we use the first 2k=l sample moments of X, i.e., 

a 
r 

n 
I: x: /n 

i=l l ' 
r=l,2,.o.,2k-l ' 

to estimate the unknown parameters u
1
,u2, ••• ,uk,p

1
,p2 , ••. ,pk-l" 

Taking rth moment from both sides of X ~ S+U and using the inde-

pende:nce of S and u, we have 

a 
r 

r r 
b(~)b .c., 

. 0 J r-J J 
J= 

5 

r=0~1, ••• ,2k-l • 

(10) 

(ll) 



It is clear that the matrix B == (b .. ) with 
lJ 

b .. 
lJ 

( ~ ) b .. 
J lJ 

i::::j,i,j=O,l, ••• ,2k-l, 

otherwise , (12) 

is a non-singular matrix. Now, using the vectors a== (a0,a1 , ••• ,a2k_1 )', 

c = (c0,c1 , ••• ,c2k~l)', and the matrix B defined by (12), the relations 

(11) can be written as 

a = Be or 
-1 

c = B a • (13) 

Thus, from (13) and (10), we can find the moment estimates of U in terms 

of the moments of s, which are known, and the moment estimates of X as 

It follows from (2) that the rth moment of U is 

c 
r 

Using (15), with r=O,l, ••• ,k-1, we obtain 

l 1 1 pl 

ul u2 ~ p2 

k-1 k-1 k-1 
ul u2 ~ pk 

(14) 

(15) 

co 

cl 

(16) 

ck-1 

The parameters u1,u2, ••• ,~ can be assumed to be the zeros of the poly­

nomial 
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P(x) 
k 

"" n (x-u.) 
i=l l 

k k-1 
X - a1x - • • • - ex x..a k-1 k • 

We now find the coefficients ex1 ,ex2, ••• ,exk in terms of 

(17) 

It is obvious that ~P(U) is a zero random variable for any non-negative 

integer £. Hence, we have E(~P(U)) = 0 or 

exkc a =f:;{,k-lc a +1 + • • • + ex c = c )(/ - )(/ 1 £+k-l £+k for £=0,l, ••• ,k-l • (18) 

From (18) we have the matrix equation 

co cl . ck-1 ex ck k 

cl c2 . ck ex 
k-1 ck+l 

(19) 

ck-1 ck . . . c2k-2 exl c2k-l 

The matrix in (19), by using (15), can be expressed as WDW1 where W= (w .. ), 
lJ 

with 
i 

w .. = u. for is the Vandermonde matrix 
lJ J 

and D is the diagonal matrix with p1,p2, ••• ,pk on the main diagonal. 

Since p. > 0 and u. f u. for if j, we conclude that all these matrices 
l l J 

are non-singular. Therefore, by solving (19) we can find the coefficients 

of the polynomial (15) and then the roots of P(x) ""0, i.e., u. 1 s in 
l 

terms of c.'s$ To identify these roots, we can assume, without loss of 
l 

generality, that u <u <···<u... 1 2 K 
Substituting the moment estimates of 

c.'s in (19), we find u.'s, i.e., the moment estimates of u. 1 s. It 
l l l 

should.be noted that there is no guarantee that we have distinct real 

7 

U. I So 
l 



However, since the sample moments a.'s 
l 

converge to a.'s with probability 
l 

one, the chance of having imaginary or equal tends to zero as sample 

size n tends to infinity. 

Replacing the moment estimates of C. IS 
l 

and u. 1 s 
l 

in (16), we obtain 

the moment estimates of p. ' s. 
l 

In practice we may not know the distribution of s; however, it is just 

enough to have some prior knowledge about the first 2k-l moments of s. 

For example, suppose that a certain material is produced by k machines 

whose products flow automatically into a common shipping room. Let X be 

some characteristic of the material and assume that X has the same distri-

bution for all machines when they are new. Thus, we can say the distribution 

of X and S are identical at the begi:n.ning, and we can find the sample 

moments of S from some observed values of Xo After a period the machines 

become old and there would be some different shifts in X from machine to 

machine. Now, X for the products in the shipping room has a finite loca~ 

tion of mixtures. Observing a random sample and using the prior knowledge 

about s, we can estimate the ·unknown parameters by the above procedure. 

To estimate the parameters of a finite scale mixture, we first find the 

moment estimates of V by using the relation d Y = TV and then we apply the 

above procedure. Actually, since T and V are independent we have 

(20) 

If E(Tr) = 0 for some of the required r's, we cannot use (20). 

Here we transform the scale mixture to a location mixture by using the loga-

ri thmic transformation we referred to in Section L An example of this case 

is the normal mixture 
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M(x) 
k 2 
L p.N(O,o-.) , 

. 1 l l l:::; 

in which T, the standard normal variable, has zero odq moments. 

4. A FINITE MIXTURE OF NEGATIVE EXPONENTIAL DlSTRIBUTIONS 

(21) 

As an example we apply the above method to find the moment estimates 

of a finite mixture of negative exponential distributions with probability 

density function 

where 

f(y) 
k 

I: p. f. (y) ' 
i=l l l 

f. (y) = exp(-y/v. )/v .• 
l l l 

(22) 

(23) 

This distribution is often used for the analysis of the completed 

length of service [2], and it has also some application in reliability and 

life testing [1]. For the case k=2, the moment estimation of the param-

eters has already received some attention, for example, by Rider [5] and 

Tallis and Light [6]. But for k > 2 the problem becomes more involved 

and there is no practical method to estimate the parameters. 

The function (22) is the density of the random variable Y ~ TV, 

where T has the probability density function exp(-t) for t > 0 and V 

has the probability mass function given by (4). We know that 

E(Tr) :::; r(r+l) = r! (24) 

:for any non-negative integer r. Now, consider a random sample 

Y
1

,Y2, ••• ,Y from a distribution with density (22). Taking 
- n 
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c E(vr-) 
r 

(25) 

Y. for X., and v. for u., we can find the moment estimates by 
l l l l 

using (15)- (19). 

It is not difficult to show that the sampling variability of the sample 

moments of the density (23) becomes larger and larger as we use higher 

moments. This behavior of sample moments reduces the efficiency of the 

estimates. We may modify the method by taking rth fractional moment ~rom 

d 
both sides of Y == TV. To estimate the parameters, for v. we take 

l 

l/(2k-l) 
w. == v. and for r we use l/(2k-l),2/(2k-l), ••• ,(2k-2)/(2k-l),l. 

l l 

Application of fractional moments may be also useful when T does not have 

integral moments. 
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